Moving Forward

James Sweeney
Management Science and Engineering Department
Stanford University

March 7, 2006
U.S. Sources of Energy

- **Petroleum**: 39 quadrillion Btu
- **Coal**: 23 quadrillion Btu
- **Natural Gas**: 23 quadrillion Btu
- **Nuclear Electric Power**: 8 quadrillion Btu
- **Wood, Waste, Alcohol**: 3 quadrillion Btu
- **Hydroelectric Power\(^1\)**: 3 quadrillion Btu
- **Geothermal, Solar, Wind**: (s) Less than 0.5 quadrillion Btu.

\(^1\) Conventional and pumped-storage hydroelectric power.
(s) = Less than 0.5 quadrillion Btu.
Energy Supply Difficulties

- **Coal**
 - Carbon dioxide releases and global climate change
- **Natural gas**
 - Limited supply
 - Large price variability over time
- **Nuclear power**
 - Disposition of spent fuel
 - High capital cost
 - Internationally proliferation: mask nuclear weapons
- **Hydropower**
 - Limited supply
- **Other renewables**
 - High cost
 - Quantities to replace fossil fuel are huge
Four Issues Encourage Reduction of Oil Use

• Environmental
 – Carbon dioxide releases and resulting global climate change
 – Oil spills (relatively rare)
• International security
 – Possible supply disruptions
 – Linked to international terrorism
 – Limits on US foreign policy
• High cost
• Future conventional oil supply decline, at least from non-OPEC nations (The End of Oil?)
Environmental
Fossil fuels account for

- 98% of the US carbon dioxide net releases into the atmosphere
- 82% of the releases of greenhouse gases, measured on a carbon equivalent basis.
U.S. CO₂ Emissions by Sector and Fuels 2003

Source: U.S. EPA Inventory of Greenhouse Gas Emissions, April 2005
Three Strategies to Reduce CO2 emissions in transportation and electricity generation

• Reduce the sector-specific activity
 – Less driving
 – Less electricity used

• Increase energy efficiency
 – Greater fuel economy of vehicles
 – Higher electricity conversion efficiency

• Change primary energy source
 – Renewables for electricity
 – Biomass or hydrogen for transportation
Security Issues
World Oil Supply, 2004, Total: 83 mmb/d

- North Sea: 7%
- Mexico: 5%
- Canada: 4%
- US: 11%
- Other Non-OECD: 15%
- China: 4%
- Former USSR: 14%
- Iran: 5%
- Iraq: 2%
- Kuwait: 3%
- Libya: 2%
- Qatar: 1%
- Saudi Arabia: 11%
- UAE: 3%
- Algeria: 2%
- Nigeria: 3%
- Venezuela: 3%
- Indonesia: 1%
- OPEC NG Plnt Lqds: 3%
Oil and Gas Reserves, Billion Barrels Oil Equivalent

<table>
<thead>
<tr>
<th>Company</th>
<th>Reserve (Billion Barrels)</th>
<th>Company</th>
<th>Reserve (Billion Barrels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saudi Aramco (Saudi Arabia)</td>
<td>302</td>
<td>ExxonMobil</td>
<td>23</td>
</tr>
<tr>
<td>National Iranian Oil Co</td>
<td>302</td>
<td>Pertamina (Indonesia)</td>
<td>22</td>
</tr>
<tr>
<td>Gazprom (Russia)</td>
<td>198</td>
<td>Lukoil (Russia)</td>
<td>21</td>
</tr>
<tr>
<td>Iraqi National Oil Co</td>
<td>136</td>
<td>BP</td>
<td>19</td>
</tr>
<tr>
<td>Qatar Petroleum</td>
<td>133</td>
<td>Pemex (Mexico)</td>
<td>19</td>
</tr>
<tr>
<td>Kuwait Petroleum Co</td>
<td>109</td>
<td>PetroChina</td>
<td>19</td>
</tr>
<tr>
<td>Petroleos de Venezuela</td>
<td>105</td>
<td>Shell</td>
<td>16</td>
</tr>
<tr>
<td>Adnoc (Abu Dhabi)</td>
<td>80</td>
<td>Yukos (Russia)</td>
<td>13</td>
</tr>
<tr>
<td>Nigerian Natnl Petroleum Co</td>
<td>41</td>
<td>Chevron</td>
<td>12</td>
</tr>
<tr>
<td>Sonatrach (Algeria)</td>
<td>38</td>
<td>Petrobras (Brazil)</td>
<td>12</td>
</tr>
<tr>
<td>Libya NOC</td>
<td>31</td>
<td>Total (France)</td>
<td>11</td>
</tr>
<tr>
<td>Rosneft (Russia)</td>
<td>28</td>
<td>Surgutneftgas (Russia)</td>
<td>9</td>
</tr>
<tr>
<td>Petronas (Malaysia)</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State Owned/Controlling Interest.
Private Sector Ownership.
Oil Prices
Crude Oil Futures Prices (as of 3/1/2006)
Oil Price Uncertainty (From Options Prices)

Below $40 | $40 - $55 | $55 - $75 | $75 - $90 | Above $90

Dec. 2006 Delivery | Dec. 2007 Delivery
Oil Price Uncertainty (From Options Prices)

Below $40

$40 - $55

$55 - $75

$75 - $90

Above $90

Probability of Being in Range

Dec. 2006 Delivery

Dec. 2007 Delivery

Dec. 2010 Delivery
Solution Strategies

- Energy Efficiency
- Energy Conservation
- Substitutes for oil
 - Fuel switching
 - New technologies
- Increases in oil supply
 - U.S. production of oil and gas
 - Production in secure, friendly areas of the world
 - Reduction in demand for oil
Energy Consumption per Dollar of Gross Domestic Product, 1949-2003

MBtu \(^1\) per Chained (2000) Dollar

Graph shows a downward trend in energy consumption per dollar of GDP from 1949 to 2003.
Energy Consumption per Dollar of Gross Domestic Product, 1949-2003

Pre-Energy-Crisis, Low Prices

Energy-Crisis, High Prices

Low Prices Through 2003
Per Capita Electricity Consumption

United States

California

kWh/person

Source: http://www.eia.doe.gov/emeu/states/sep_use/total/csv/use_csv.html
Policy Agenda
Get Prices Right

- Oil
 - The world oil price is passed through to drivers
 - International security externality not included
 - CO$_2$ externality not included
 - Other travel externalities not included
 - Congestion
 - Highway/Road mortality/injury
 - Criteria pollutants

- Thus price we pay for gasoline is too low
Get Prices Right

• US oil price should include an international security externality premium/tax/fee
 – Gasoline tax
 – Higher CAFE standards on light duty vehicles

• Prices for oil substitutes should not be kept artificially high
 – Import tax on ethanol -- $.54 per gallon -- should be eliminated
 • Import Ethanol from Brazil instead of subsidizing it in the U.S.
Get Prices Right

• CO₂
 – Need US national carbon dioxide cap-and-trade system
 • The United States could implement a cap and trade system even if we do not ratify Kyoto protocol
 – System can be implemented
 • The nations that have ratified the Kyoto protocol now are operating such a system
 • Currently states are beginning to implement such systems, but a national system would be preferable
 • We have experience in cap-and-trade
 – Acid Rain SOx trading
 – RECLAIM program for criteria pollutants
 – Chicago Climate Exchange
Encourage Technology Development

- President Bush state of the Union speech
 - Call for more research and development
 - Primarily supply technologies
- Equally important – if not more important – energy efficiency technologies
 - Rapid change possible through more efficient vehicles
 - Hybrid electric vehicles
 - Possibly plug-in hybrids
 - Possibly all electric vehicles
 - Longer run: Possibly hydrogen vehicles
 - Buildings:
 - Lighting: light emitting diodes
 - Building design, technologies, operating processes
Encourage Technology Development

- Governmental R&D
 - Federal
 - States (California Public Interest Energy Research Program)
- R&D incentives
 - In energy bill
- Technology competitions
- Green labeling
Encourage Entrepreneurial Efforts

- May look like no policy at all.
- Encourage technical and market experimentations
 - Some will ultimately make it big; others will not.
 - But the genius of Silicon Valley involves entrepreneurial efforts, risk-taking, pioneering efforts.
 - Some of these will be failures, some successes.
 - Successes will live on, grow to become the household names.
 - will spawn more entrepreneurial challenges
 - The failures will typically lead to different attempts, some successes, some failures.
 - Ahead of time impossible to know which will disappear and which will be the next Google.
 - Lighting, vehicles are poised for fundamental change.
 - Examples
Manage Risk

• National oil companies have incentive to increase uncertainty of oil prices
 – Uncertainty reduces investment in capital intensive energy supply alternatives

• Need short run shock absorbers, such as strategic petroleum reserve, to mitigate impacts of supply disruptions

• Consider variable gasoline tax to assure automakers and drivers that price of gasoline will remain high and therefore to encourage purchase of more fuel-efficient vehicles
Adopt Sector-Specific policies

- Autos
 - Higher CAFE standards
- Electricity
 - Renewable Portfolio Standards; Carbon Dioxide Adders
- Buildings
 - Building Efficiency Standards
- Appliances
 - Appliance efficiency standards; Energy Star labeling
- Transportation Fuels
 - Biomass required percentage
- Solar
 - Tax credits; Subsidies (Million Solar Roofs Initiative)